
Genetic Epidemiology 18:293–306 (1999)

© 2000 Wiley-Liss, Inc.

Score Tests for Familial Correlation in
Genotyped-Proband Designs

Raymond J. Carroll, 1* Mitchell H. Gail, 2 Jacques Benichou, 3 and David Pee 4

1Department of Statistics, Texas A&M University, College Station, Texas
2Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National
Cancer Institute, Bethesda, Maryland

3Biostatistics Unit, University of Rouen Medical School, CHU de Rouen, France
4Information Management Systems, Rockville, Maryland

In the genotyped-proband design, a proband is selected based on an observed
phenotype, the genotype of the proband is observed, and then the phenotypes of
all first-degree relatives are obtained. The genotypes of these first-degree rela-
tives are not observed. Gail et al. [(1999) Genet Epidemiol] discuss likelihood
analysis of this design under the assumption that the phenotypes are condition-
ally independent of one another given the observed and unobserved genotypes.
Li and Thompson [(1997) Biometrics 53:282–293] give an example where this
assumption is suspect, thus suggesting that it is important to develop tests for
conditional independence. In this paper, we develop a score test for the condi-
tional independence assumption in models that might include covariates or ob-
servation of genotypes for some of the first degree relatives. The problem can be
cast more generally as one of score testing in the presence of missing covariates.
A standard analysis would require specifying a distribution for the covariates,
which is not convenient and could lead to a lack of model-robustness. We show
that by considering a natural conditional likelihood, and basing the score test on
it, a simple analysis results. The methods are applied to a study of the pen-
etrance for breast cancer of BRCA1 and BRCA2 mutations among Ashkenazi
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INTRODUCTION

Once a gene has been identified as affecting risk of disease and the gene has
been isolated, there are several study designs available to determine the risk of the
disease (the penetrance) from that gene in the general population, including cohort
and case-control designs. A promising design is the genotyped-proband design, which
was used by Struewing et al. [1997] to estimate the cumulative risk of developing
breast cancer in Ashkenazi Jewish women who carry mutations of BRCA1 and
BRCA2. Wacholder et al. [1998] discuss this design and called it the “kin-cohort”
design, and Gail et al. [1999] constructed likelihoods and described calculations of
sample sizes needed to achieve required precision of penetrance estimates.

In this design, a proband is selected and a phenotype obtained, perhaps at random
from the population of cases with disease, or at random from the population of non-
cases. For quantitative traits such as blood pressure, “cases” might have a prescribed
elevation. After observing the phenotype of the proband, the proband’s genotype is ob-
tained, as well as the phenotypes of all first-degree relatives. Occasionally, one might
also obtain the genotype of a randomly selected first-degree relative. A major factor is
that the genotypes of most of the family are unobserved, and hence missing.

Under assumptions of simple Mendelian genetics with two alleles (wild-type a
or mutant A), Gail et al. [1999] construct likelihoods for parameters in models relat-
ing phenotypes to genotypes, and for allele frequency. Their analysis makes a crucial
assumption, namely that within a family, the Hs are independent of one another given
only the genotypes. Violations of this assumption would affect the validity of both
maximum likelihood estimates and likelihood inferences. Recently, in analyzing a
different design where no genotypes are observed, Li and Thompson [1997] describe
an example in a survival analysis context where full random effects analysis sug-
gests that the conditional independence assumption fails. It is thus of considerable
interest to derive methods to test this assumption.

Indeed, it is likely that there are residual family effects that could induce famil-
ial correlations in breast cancer risk conditioned on the status of major cancer genes,
such as BRCA1 or BRCA2. As Li and Thompson state, “Often, dependence among
relatives is also due to random effects such as shared environment within a family.”
Diet, endogenous hormones, and reproductive history are thought to influence breast
cancer risk, and these factors are not known to be affected by BRCA1 or BRCA2.
Because these factors may be correlated within families as a result of other genetic
influences or learned behaviors, it is plausible that the assumption of conditional
independence might fail.

This paper proposes a score test of the conditional independence assumption, in
a context that generalizes previous work to allow for family-level and individual-
level covariates. The test, a score test for a random effect, exploits the work of Liang
[1987], but differs from that work because we incorporate the missing genotypes.
For other recent important work on score tests, see Commenges et al. [1994, 1995]
and Commenges and Jacqmin-Gadda [1997]. A recent review of these tests is given
by Lin [1997].

Score tests are often used to assess the hypothesis of independence of observa-
tions within a family, or more generally within a cluster. Score tests have the advan-
tages of computational simplicity and model robustness. For example, suppose that
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all genotypes were observed, that the gene is autosomal dominant, and that the H
is binary. Let g = 1,2,3 correspond, respectively, to genotypes AA, Aa, and aa.
With no covariates, Gail et al. [1998] assume no random effect and write
pr{disease|g ∈ (1,2)} = H(g) and pr(disease|g = 3) = H(h), where H(v) = 1/{1 +
exp(–v)} is the logistic distribution function. The value of H(γ) is the “penetrance”
of the dominant mutant allele, and H(h) is the penetrance of the wild type. To
test for family-level correlation, one might first hypothesize a random effect ζ
with mean zero and variance k, and that within a family, pr{disease|g ∈ (1,2)} =
H(g + z) and pr(disease|g = 3) = H(h + z). A score test is a test of κ = 0, with the
parameters (g, h) estimated under the null hypothesis. Score tests have the ad-
vantage that one need not specify a distribution for the random effect z, and they
are locally most powerful tests. The distributional-robustness of a score test is a
powerful feature, as is the typical ease of computation, since everything is done
at the null hypothesis.

The outline of the paper is as follows. The general framework and the specific
assumptions made are introduced in Data and Likelihoods. The tests are defined
explicitly in Score Tests for Familial Correlation. A simulation is given in Simula-
tion. The Example describes the analysis of a subset of the data of Struewing et al.
[1997], and suggests that familial correlations may be present. Concluding remarks
are given in the Discussion.

DATA AND LIKELIHOODS
Data and Basic Models

In a genotype-proband study, a proband is selected and the phenotype is ob-
served. One then observes the covariates for the proband, as well as the phenotypes
and covariates for the other family members. Finally, some of the genotypes of other
family members, selected at random, may be observed. In the genotyped-proband
design of Struewing et al. [1997], the proband is genotyped. Other designs might
also select a random family member, or even the entire family for genotyping.

We make the following assumptions.

• Probands are selected at random within clusters defined by phenotype.
• Alleles are assumed to be in Hardy-Weinberg equilibrium and random mat-

ing is assumed.
• The marginal distribution of genotypes does not depend on the covariates,

i.e., there is no stratification by genotype.
• The random effects, if any, are independent of the covariates and genotypes.
• The proband’s phenotype is conditionally independent of the covariates of

the other family members, given the family-level random effect and the
proband’s genotype and covariates.

• The distribution of genotypes in a family is a known function of the mutant
allele frequency q. Gail et al. [1999] describe a simple method of exhaustive
enumeration for small pedigrees to compute these mass functions using Men-
delian calculations based on the assumptions of Hardy-Weinberg equilib-
rium and random mating.
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Likelihood Functions

The data as described above are a special form of a missing data problem, where
some or all of the genotypes in a family are missing, at random, in the nomenclature
of Little and Rubin [1987]. By the nature of the genotyped-proband design, since all
analysis is done subsequent to the selection of the proband, and the selection prob-
ability depends on the phenotype Yp of the proband, it would ordinarily make sense
to compute the likelihood conditioned only on Yp. As shown in the Appendix, the
difficulty with such an analysis is that in order to implement it, one must also specify
a joint distribution for all the covariates, and analyses would not be robust to
misspecification of this distribution. The analysis would also be made more complex
by the addition of more parameters in the joint (marginal) distribution of covariates.

To avoid this difficulty, we have taken an alternative approach, where we con-
dition not only on the phenotype of the proband, but also on the covariates. It is the
special feature of this problem, and the assumptions that we have made, that enable
us to compute a conditional likelihood that does not depend on the distribution of the
covariates. The result is a semiparametric method in the sense of Robins et al. [1994].
While some efficiency may be lost in this way, we doubt that the loss is very great,
and it is certainly outweighed by the simplicity and model-robustness of the subse-
quent analysis.

SCORE TESTS FOR FAMILIAL CORRELATION

Notation and General Definitions

This section gives a precise description of the data and likelihood functions.
The phenotypes of a family are denoted by Y_

~
, the genotypes by ~g , and

covariates by ~Z . The distribution of the phenotype depends on a parameter β, as
well as the genotypes and covariates. The random effect denoted by ζ = κ1/2ν,
where ν has a distribution function FRE(·) with mean zero and variance one. The
proband phenotype is Yp, and the covariates for the proband are ~

Z p . Finally,
some of the genotypes of the family may be observed, which we denote by ~g p .
In the genotyped-proband design of Struewing et al. [1997], ~g p  is the genotype
of the proband. Other designs might also select a random family member, or
even the entire family for genotyping. In either case, ~g p are the observed geno-
types. We will write ~gm as the missing genotypes.

The joint distribution for a family of the phenotypes given the covariates, geno-
type, and random effect is denoted by f (~ ~y| z ,~g , z, b).

The conditional mass function of the missing genotypes is denoted by
fCG(~ |~ ,~g g zm

p , q) = fCG(~ |~g gm
p , q) , where “CG” stands for “conditional genotype prob-

ability mass function.”
The marginal distribution of genotypes does not depend on the covariates, i.e.,

there is no stratification by genotype. We write this as fG( 
~ |~g zp , q) = fG(~g p |q), where

“G” stands for “genotype probability mass function.”
The density or probability mass function of the proband’s phenotype given the

covariates, observed genotypes, and random effect f(yp|~, ~z g p , z, b) = f(yp|~ , ~z gp p , z , b).
Let B = (b, q). A simple analysis shows that the likelihood of the observed data

given (Yp, ~Z ) is
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where the notation Idm(·) means a summation over the argument.
The special structure of our conditional likelihood enables easy computation of

the score test for the hypothesis that k = 0. The general theory is fairly standard, and
we now outline it. Later we specialize the general theory to our case, showing that
considerable simplifications occur. As before, B = (b, q).

General Theory

For our problem, referring to (1), write the score statistic for the ith family as
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Under the hypothesis that k = 0, the maximum likelihood estimate B̂ will usually be
computed numerically. The derivatives (3) can also be computed by numerical dif-
ferentiation.

For the ith family, define the expected information matrices by
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where these expectations are all computed with respect to the density or probability
mass function in (1). Note that because we have conditioned properly, these expecta-
tions do not involve the distribution of the covariates, although they are of course
functions of the observed covariates.

Let p be the number of components of B, and let n be the number of families. It
follows from standard likelihood theory that the score test statistic is

{ ,B

I B I B I B I BB BB B

n n p Si
n

i
p

i i

i
n

i i
n

i i
n

i i
n

i
t

/ ( )} (
~

,~ ,
~ $)

( $) { ( $)}{ ( $)} ( $)
,

/

/

-

-

=

= = =
-

=

1 2
1

1 1 1
1

1

1 2

S

S S S S

κ

κκ κ κ

Y g Z
(4)



298 Carroll et al.

where the leading term is a correction for degrees of freedom [Simpson et al., 1997].
This is a one-sided test, and thus to achieve a nominal level of a, the test statistic (4)
should be compared to the 1 – a percentile of the t-distribution with n – p degrees of
freedom: of course, if the number of probands n is large, this percentile is essentially
the same as the standard normal percentile.

In some problems, the expectations required to compute the terms in the de-
nominator may be too difficult to compute in practice, in which case one could use
observed information and remove the expectations in Ikki(B),IkBi(B) and IBBi(B).

Computing the Score Statistic

In order to implement (4), we need to compute the numerator. In this section we
derive the formulae for this computation. Using the methods of Liang [1987], and
ignoring the indices if all genotypes were known, the score statistic for an entire
family or the proband is usually easily computed. We will later give some examples
of this computation, but in what follows, if we had data from an entire family (in-
cluding genotypes), then we will assume that the score statistic can be computed,
and we will write it as
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At least formally, the same calculation can be done for data from the proband only,
and we will write this as
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As shown by Liang [1987] and the example considered below, in many important
problems S1,k(·) and S2,k(·) have a convenient form.

In the Appendix, we show that knowledge of the score statistic for completely
known genotypes leads easily to the following formulae:
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We have, thus, derived an explicit formula for the numerator of (4). It is
important to note that, in common with the results of Liang [1987], the score test
statistic does not require that we actually specify the non-null distribution of the
random effects.

Binary and Weibull Phenotypes, Classical Genotyped-Proband Design

Consider an autosomal dominant gene in the genotyped-proband design with a
binary phenotype and no covariates. The natural generalization to allow for random
effects is to set pr{Y = 1|G ∈ (1,2), z} = H(g + z) and pr(Y = 1|G = 3, z) = H(h + z),
where as before z = k1/2n, where n has a distribution function FRE(·) with mean zero
and variance one. We want to test that k = 0, i.e., that there is no familial correlation
other than that determined by the family’s genotypes. For this problem, all the terms
necessary to form the score test are easily computed, and are available from the first
author.

For survival times, we use the improper Weibull model of Gail et al. [1999], in
which the penetrance is expressed as the probability that an individual will eventu-
ally become diseased. In the absence of a random effect, for a person with genotype
g, we assume that the survival function is

S tg g g g
g g( ) exp ( ).= - + -1 f f l ta a (7)

The penetrances f0 and f1 correspond to lifetime risks for those not carrying and
carrying the gene, respectively. The improper survival distribution (7) arises as a
mixture of fg susceptible and 1 – fg non-susceptible members of the population, the
former having a Weibull distribution of times to disease.

The hazard function for susceptibles is lg
agagt

ag–1, and it is by multiplying this
hazard by a “frailty” factor that we will incorporate a random effect. In fact, given a
familial random effect z = k1/2n, the survival functions and density functions for
susceptibles given the random effects are
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For this problem, all the terms necessary to form the score test are computed in the
Appendix.

SIMULATION

We performed a small simulation to illustrate the results with a binary pheno-
type and an autosomal dominant gene. Among carriers of the gene, the probability of
disease was f1  = 0.92, this being the penetrance of the gene. Among non-carriers,
the probability of disease was set to f0 = 0.10. The allele rate was set to q = 0.0033.
As described by Gail et al. [1999], the values of (q, f0 ,f1) were chosen to reflect
penetrances and allele frequencies estimated by Claus et al. [1991], who studied the
risk from a hypothetical autosomal dominant mutation for breast cancer.
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The power of the score test was computed for a random effects model with z =
k1/2n, where ν is a standard normal random variable. We assumed a family of size 3,
consisting of a mother, a sister, and a sister-proband. For each family, genotypes
were generated under our assumptions, and then a family-level random effect z was
generated. Then among carriers of the gene, phenotypes followed a Bernoulli model
with probability of disease H(g + k1/2ν), where H(·) is the logistic distribution func-
tion and g was chosen so that pr(disease | carrier) = E(H(g + k1/2n) = f1. Similarly,
among non-carriers of the gene, phenotypes followed a Bernoulli model with prob-
ability of disease H(h + k1/2n), where H(·) is the logistic distribution function and η
was chosen so that pr(disease | non-carrier) = EH(h + k1/2n) = f0. We generated a
large number of such families, and then selected 400 families with a case-proband,
and 400 families with a control proband.

We simulated the score test 500 times for the values k1/2 = 0.0 (null case), 0.3,
0.6, 1.0. In the null case, the parameter estimates were found to be nearly unbiased
(see Table I), but the maximum likelihood estimate of the penetrance f1 equaled 1.0
approximately 35% of the time. The simulated level of a nominal 5%-level test was
found to be 0.048, very near the nominal level.

The power of the test for k1/2 = 0.3, 0.6, 1.0 was found to be 0.140, 0.724,
1.000, respectively. To understand the magnitude of these alternatives, we constructed
what we call the “family-influence,” namely

family - influence 
pr

pr
=

= = = =
= = =

( | , , )

( | , )
.

/Y Y g

Y Y g
sister proband proband

sister proband proband

1 1 1

1 1 1

1 2ζ κ υ

This influence is displayed as a function of v in Figure 1. We see here, for example,
that when k = 1.0, the chance that a sister has the disease given that the proband is a
carrier and has the disease is increased by approximately 50% for a very large ran-
dom effect (2.5 standard deviation). This increased influence is only about 15% when
the random effect is 1.0 standard deviation. We believe that the results indicate that
the score test can detect a large departure from the conditional independence as-
sumption.

One might also test for familial aggregation not related to the gene under study

TABLE I. Results From a  Simulation of a Binary Phenotype for Possible Family Level
Correlations in Phenotypes When the Allele Frequency is q = 0.0033, the Penetrance for Wild
Type is q0 = 0.10 and the Penetrance for Mutant Type is q1 = 0.92

Random effect s.d. 0.0 0.3 0.6 1.0 2.0 4.0

Mean (q) 0.0034 0.0055 0.0058 0.0044 0.0072 0.0132
100× s.e. of mean 0.0036 0.0035 0.0038 0.0045 0.0067 0.0103
Median (q) 0.0033 0.0034 0.0037 0.0044 0.0071 0.0120
Mean (q0) 0.100 0.103 0.113 0.133 0.204 0.269
100× s.e. of mean 0.035 0.035 0.036 0.039 0.051 0.051
Median (q0) 0.100 0.103 0.112 0.133 0.203 0.268
Mean (q1) 0.906 0.910 0.916 0.934 0.962 0.951
s.e. of mean 0.0042 0.0044 0.0042 0.0037 0.0028 0.0018
Median (q1) 0.922 0.941 0.948 0.980 1.000 1.000

*There were 500 simulated experiments, each with 400 proband cases and 400 proband controls.



Genotyped–Proband Designs 301

by examining correlations among phenotypes of first-degree relatives of non-carrier
probands. With rare allele frequencies, the gene under study should contribute very
little to such correlations. We tested for intraclass correlation between the sister and
the mother of non-carrier probands. We first subtracted the sister and mother means
from the responses and then did a standard permutation test of the product. In our

Fig. 1. Let the random effect be z = k1/2v. The family consists of a mother, a sister and a sister-
proband. This is pr(Ysister = 1|Yproband = 1,gproband = 1, z )/pr(Ysister = 1|Yproband = 1, gproband = 1) as a
function of x = v = z /k1/2, i.e., as a function of standard deviations of the random effect.



302 Carroll et al.

simulations, these tests had a level slightly higher than the nominal 5% (level =
0.072), and their power was lower than that of the score test (power = 0.124, 0.240,
0.734, respectively).

The fact that the score test has more power than ad hoc tests such as described
above is to be expected, since the score test is known to be the (locally) most power-
ful test for familial correlation.

Effects of Residual Family Correlation

As part of the simulations, we were able to examine the effect of residual fam-
ily correlation on the parameter estimates of allele frequency q, penetrance for mu-
tant type f0, and penetrance for rare type f1. The results are given in Table I when
the family random effects have standard deviation k1/2 = 0.0, 0.3, 0.6, 1.0, 2.0, 4.0.
The most noticeable result is that for increasingly more severe random effects, all
parameters are overestimated. Even when the standard deviation of this random ef-
fect equals 1.0, the allele frequency is overestimated by 1/3, and it is overestimated
by 100% when the standard deviation is as large as 2.0.

The over-estimation of all three parameters appears to be a small-sample phe-
nomenon. For other purposes we repeated the simulations with k1/2 = 1.0 but with
9.750 proband controls and 1,083 proband cases, and found that while q and f1 were
still overestimated with simulation means 0.004 and 0.938, respectively, f0 was slightly
underestimated with simulation mean 0.098.

EXAMPLE

We were able to obtain a subset of the data considered by Struewing et al.
[1997]. First, all families were identified that had known breast cancer status for a
proband, at least one sister and her mother. Then, a randomly selected sister of the
proband was chosen. The final data set made available to us then consisted of 1,960
families with a proband, her mother and a single sister. We based our analysis upon
the Weibull model (7). There were 143 case probands.

Under the conditional independence assumption, the lifetime penetrance for those
having the gene was estimated as f1 = 0.68, while for those without the gene the
penetrance was estimated as f0 = 0.27. The allele frequency was estimated as q =
0.0122. The score test statistic had a value of 2.36, which has a one-sided signifi-
cance level of 0.009. Thus, the evidence points to a violation of the conditional inde-
pendence assumption. To check that the level of the test was nearly the nominal, and
thus that the effect we are observing is not due to problems with the test statistic, we
ran a small parametric bootstrap simulation. Data were generated according to the
model (7), with no random effects and parameters set to their maximum likelihood
estimates. We ran 100 simulations to test this null model, and at the nominal 5%
level, observed 5 rejections.

Several possibilities could account for residual “non-genetic” correlation in these
data. Other mutations than the BRCA1 and BRCA2 mutations under study could be
segregating in these families, such as genetic factors that influence reproductive hor-
mone levels. Shared diet or other environmental factors could also account for re-
sidual correlation. Selection bias is another possibility. In particular, if a subject is
more likely to volunteer to be a proband in the study if her mother and sister both
have breast cancer, an artifactual correlation could be induced.
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DISCUSSION

While we have focused on the score test for a random familial effect in
genotyped-proband studies, the methods derived are actually an example of a more
general phenomenon. In the Appendix, we consider the case that one of the covariates
is sometimes missing, while the other covariates are always observable. This is a
form on monotone missingness [Little and Rubin, 1997]. In the problem we have
considered, the partially missing covariate is genotype, while all other covariates
were observable. Our analysis conditioned on these always observable covariates.
Conditioning on the covariates that are never missing, it is generally easy to com-
pute the score test for a random effect if the conditional distribution of the missing
covariates can be specified as a function of the observed covariates and a parameter.
This result could be useful if, in addition to genotypes, other covariates are missing,
such as age at menarche or age at first live birth. As we show in the Appendix, in
order to compute the score test, one must specify the distribution of the missing
covariates given the observed ones as in a standard likelihood analysis. This may be
more or less easy and practicable in different situations.

More generally, if missing data were not monotone, e.g., those covariates other
than the genotype that we have assumed are always observable are instead some-
times missing, a full likelihood analysis can be contemplated. However, as indicated
in the Appendix, this requires the specification of the joint distribution of the covariates
within a family. This is possible to do, but care must be taken to specify an appropri-
ate distribution that allows for correlations of the covariates within a family.

Our discussion, simulation, and example have focused on the use of phenotypes
of first-degree relatives. However, the formulae are sufficiently general to allow for
observing the phenotypes of second-degree relatives, as long as the random effect is
now interpreted as belonging to an extended family.
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APPENDIX
Verification of (6)

Here we verify (6). Referring to (2), it suffices to consider the denominator of
(1), since the numerator follows in a similar manner. We have that
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This last term is easily shown to equal H2
~

,~Y g p , B) as claimed.

Formulae for the Weibull Model

Consider an individual family with J members. We write ∆j = 1 if the jth family
member is uncensored, and ∆j = 0 otherwise. Let Tj be the minimum of the survival
and censoring times, and let M = ΣJ

j = 1 ∆j be the number of uncensored family mem-
bers. Define
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Given the random effect, the likelihood of the uncensored family members is thus

a0 exp(Mk1/2n)exp{–a1 exp(k1/2n)}.

Now consider the censored family members. Given the random effects, the likeli-
hood of these censored observations is

1 1 2

1

1

- + -
=

-

º f f l k n
a a

g g g j
j

J

j j j

g j gj

j

Texp{ exp( )}/
D

= - - -

= -

= =

=

Ê ºÊ

Ê Ê

-

=

-

L

L K K

1 0 0

0

1
1 1 2

1

11

1

1 1
1 2

1

1 1( ) exp{ ( ) exp( )}

( , , ) exp{ ( , , ) exp( )},

/

/

f f l k n

k n

a a
g g j g j

j

J

J J

j

j

j

j

j

gj

j

J

J

T

b c

D

where

b

c l T

J g g
j

J

J j g j
j

J

j

j

j

j
j

j

gj
j

( , , ) ( ) ;

( , , ) ( ) .

1
1 1

1

1

1

1

1

1

K

K

= -

= -

- -

=

-

=

º

Ê

f f

l
a a

J L

J L

D

D

In what follows, we will write c(·) as a shorthand for c(l1,...,lJ), and similarly for
b(·). If all the genotypes were observable, then, as we now show, the contribution of
this family to the score test statistic, namely (5), is
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The contribution (6) for an individual is calculated similarly, except that J = 1 and
calculations are done only for the proband: note that all the terms making up (8)
have to be redefined, i.e., M, J, a1, etc.

To see (8), note that the likelihood given the random effects is
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Applying L’Hospital’s rule, this is seen to equal (8).

Why One Should Condition on Covariates

The likelihood (1) conditions on the covariates ~
Z  in the family. The advantage

of this conditioning is that while the values of the covariates in the sample are im-
portant, their distribution is not required. We now argue that for reasons of model
robustness, the conditional likelihood (1) is often preferable. We make our argument
under the assumption of no family-level random effect, so that z = 0.

The genotyped-proband design is based on the proband phenotype Yp, and hence
the likelihood of all the data is that of (

~
,
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,~Y Z g p ) given Yp. Let ƒZ (~z) and ƒz*( ~z p) be
the density/mass function of ~

Y  and ~Z p , respectively. Then the likelihood of all the
data is (1) times the term
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As seen in the denominator of (9), the extra contribution to the likelihood, which
comes from not conditioning on the covariates ~

Z , requires that one specify a model
for the marginal distribution of the covariates.
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Score Tests With Missing Data

Suppose that ~Y  is a response and ~W  a set of covariates, some of which are
observed (

~
WO

) and some of which are missing (~
WM

). Suppose that a joint density
of ~

W  depends on a parameter q, and write the density/mass function of the missing
covariates given the observed ones as ƒZm|Zo(

~ | ~w wM O
, q). Write the random effects as

ζ = k1/2ν, and write the model density depending on a parameter b as f(~| ~ , ~y w wO M , z ,

b). Write B = (b, q). Using the work of Liang [1987], it is often easy to compute the
complete-data score statistic.
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In our case, ~W  consists of the covariates ~
Z  and the genotypes ~g . The missing

covariates are the genotypes of family members, so that the joint distribution of ~
Z

and ~
W M

 is completely specified by the allele frequency q, and the integrals in (10)
are, thus, easy to compute by summation. Equation (6) is simply then a simple appli-
cation of the basic idea in (10).
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